Trong gia công cơ khí nói chung, cơ khí chính xác nói riêng, ngoài việc đạt kích thước chi tiết theo bản vẽ đã được các kĩ sư thiết kế, chúng ta cần phải chú ý tới các yêu cầu kĩ thuật của chi tiết. Một trong các yêu cầu kĩ thuật quan trọng là Chất lượng bề mặt chi tiết máy.
Để nghiên cứu về Chất lượng bề mặt chi tiết máy, trước tiên ta cần tìm hiểu kĩ «Các yếu tố đặc trưng cho chất lượng bề mặt chi tiết máy», sau đó phân tích «Ảnh hưởng của chất lượng bề mặt tới khả năng làm việc của chi tiết máy » và «Các yếu tố ảnh hưởng đến chất lượng bề mặt chi tiết«. Trong loạt bài viết này, Blog Yêu cơ khí mời các bạn tìm hiểu «Chất lượng bề mặt chi tiết máy» trong chủ đề Giáo trình công nghệ chế tạo máy được phát hành tại địa chỉ https://yck2020.blogspot.com. Bạn có thể tải về file word bài viết này để học tập và tham khảo.
Các yếu tố ảnh hưởng đến chất lượng bề mặt chi tiết
Trạng thái và tính chất của lớp bề mặt chi tiết máy trong quá trình gia công do nhiều yếu tố công nghệ quyết định như tính chất vật liệu, thông số công nghệ, vật liệu dao, sự rung động trong quá trình gia công, dung dịch trơn nguội ...
Người ta chia các yếu tố ảnh hưởng đến chất lượng bề mặt thành 3 nhóm:
Các yếu tố ảnh hưởng mang tính in dập hình học của dụng cụ cắt và của thông số công nghệ lên bề mặt gia công.
Các yếu tố ảnh hưởng phụ thuộc vào biến dạng dẻo của lớp bề mặt.
Các yếu tố ảnh hưởng do rung động máy, dụng cụ, chi tiết gia công.
1. Ảnh hưởng đến độ nhám bề mặt
a) Các yếu tố mang tính in dập hình học của dụng cụ cắt và chế độ cắt
Để nghiên cứu, ta xét phương pháp tiện. Qua thực ngiệm, người ta đã xác định mối quan hệ giữa các thông số: độ nhấp nhô tế vi Rz, lượng tiến dao S, bán kính mũi dao r, chiều dày phoi nhỏ nhất có thể cắt được hmin. Tùy theo giá trị thực tế của lượng chạy dao S mà ta có thể xác định mối quan hệ trên như sau:
Ở đây, hmin phụ thuộc bán kính r của mũi dao:
+ Nếu mài lưỡi cắt bằng đá kim cương mịn, lúc đó r = 10 μm thì hmin = 4μm.
+ Mài dao hợp kim cứng bằng đá thường nếu r = 40 μm thì hmin > 20 μm.
- Khi S quá nhỏ (< 0,03 mm/vg) thì trị số của Rz lại tăng, tức là khi gia công tinh với S quá nhỏ sẽ không có ý nghĩa đối với việc cải thiện chất lượng bề mặt chi tiết vì xẩy ra hiện tượng trượt mà không tạo thành phoi. Chiều sâu cắt t cũng có ảnh hưởng tương tự như lượng chạy dao đối với chiều cao nhấp nhô tế vi, nếu bỏ qua độ đảo của trục chính máy.
Các thông số hình học của lưỡi cắt, đặc biệt là góc trước ó và độ mòn có ảnh hưởng đến Rz. Khi góc ó tăng thì Rz giảm, độ mòn dụng cụ tăng thì Rz tăng.
Ngoài ảnh hưởng đến nhám bề mặt, hình dáng hình học của dụng cụ cắt và chế độ cắt cũng ảnh hưởng đến lớp biến cứng bề mặt và được tính đến qua hệ số hiệu chỉnh.
Ví dụ: Xét sự ảnh hưởng của hình dạng hình học của dụng cụ cắt và chế độ cắt đến chất lượng bề mặt chi tiết khi tiện.
Sau một vòng quay của phôi, dao tiện sẽ dịch chuyển một đoạn là S1 từ vị trí 1 đến vị trí 2 (hình 2.6a). Trên bề mặt gia công sẽ bị chừa lại phần kim loại m không được hớt đi bởi dao. Chiều cao nhấp nhô Rz xác định bởi S1 và hình dạng hình học của dao cắt.
Nếu giảm lượng chạy dao thì chiều cao nhấp nhô cũng giảm (hình 2.6b).
Thay đổi giá trị góc ϕ và ϕ1 không những làm thay đổi chiều cao nhấp nhô mà còn làm thay đổi cả hình dạng nhấp nhô (hình 2.6c).
Nếu bán kính mũi dao có dạng tròn r1 thì nhấp nhô cũng có đáy lõm tròn (hình 2.6d).
Nếu tăng bán kính mũi dao lên r2 thì chiều cao nhấp nhô Rz sẽ giảm (hình 2.6e).
Khi bán kính đỉnh r nhỏ và lượng chạy dao S lớn, ngoài phần cong của lưỡi cắt, phần thẳng cũng tham gia vào việc ảnh hưởng đến hình dạng và chiều cao nhấp nhô (hình 2.6f)
b) Các yếu tố phụ thuộc biến dạng dẻo của lớp bề mặt
Khi gia công vật liệu dẻo, bề mặt ngoài sẽ biến dạng rất nhiều làm cho cấu trúc của nó thay đổi. Khi đó, hình dạng hình học và độ nhấp nhô đều thay đổi. Khi gia công vật liệu giòn, có một số phần nhỏ lại phá vỡ, làm tăng độ nhấp nhô bề mặt.
1. Tốc độ cắt V là yếu tố cơ bản nhất, ảnh hưởng tới sự phát triển của biến dạng dẻo khi tiện:
- Khi cắt thép Cacbon ở vận tốc thấp, nhiệt cắt không cao, phoi kim loại tách dễ, biến dạng của lớp bề mặt không nhiều, vì vậy độ nhám bề mặt thấp. Khi tăng vận tốc cắt đến khoảng V = 20 - 40 m/ph thì nhiệt cắt, lực cắt đều tăng và có giá trị lớn, gây ra biến dạng dẻo mạnh, ở mặt trước và mặt sau dao kim loại bị chảy dẻo. Khi lớp kim loại bị nén chặt ở mặt trước dao và nhiệt độ cao làm tăng hệ số ma sát ở vùng cắt sẽ hình thành lẹo dao. Lẹo dao làm tăng độ nhám bề mặt gia công. Nếu tiếp tục tăng vận tốc cắt, lẹo dao bị nung nóng nhanh hơn, vùng kim loại biến dạng bị phá hủy, lực dính của lẹo dao không thắng nổi lực ma sát của dòng phoi và lẹo dao bị cuốn đi (lẹo dao biến mất khi vận tốc cắt khoảng V = 30 - 60 m/ph). Với vận tốc cắt V > 60 m/ph
thì lẹo dao không hình thành được nên độ nhám bề mặt gia công giảm, độ nhẵn tăng.
- Khi gia công kim loại giòn (gang), các mảnh kim loại bị trượt và vỡ ra không có thứ tự làm tăng độ nhấp nhô tế vi bề mặt. Tăng vận tốc cắt sẽ giảm được hiện tượng vỡ vụn của kim loại, làm tăng độ nhẵn bóng của bề mặt gia công.
2. Lượng chạy dao S là thành phần thứ hai của chế độ cắt ảnh hưởng nhiều đến chiều cao nhấp nhô Rz. Điều đó không những do liên quan về hình học của dao mà còn do biến dạng dẻo và biến dạng đàn hồi của lớp bề mặt.
Khi gia công thép Carbon, với giá trị lượng chạy dao S = 0,02 - 0,15 mm/vg thì bề mặt gia công có độ nhấp nhô tế vi thấp nhất. Nếu giảm S < 0,02 mm/vg thì độ nhấp nhô tế vi sẽ tăng lên, độ nhẵn bóng bề mặt giảm vì ảnh hưởng của biến dạng dẻo lớn hơn ảnh hưởng của các yếu tố hình học. Nếu lượng chạy dao S > 0,15 mm/vg thì biến dạng đàn hồi sẽ ảnh hưởng đến sự hình thành các nhấp nhô tế vi, kết hợp với ảnh hưởng của các yếu tố hình học làm cho độ nhám bề mặt tăng lên nhiều.
Như vậy, để đảm bảo đạt độ nhẵn bóng bề mặt và năng suất cao nên chọn giá trị lượng chạy dao S = 0,05 - 0,12 mm/vg đối với thép Carbon.
3. Chiều sâu cắt t cũng có ảnh hưởng tương tự như lượng chạy dao S đến độ nhám bề mặt gia công, nhưng trong thực tế, người ta thường bỏ qua ảnh hưởng này. Vì vậy, trong quá trình gia công người ta chọn trước chiều sâu cắt t. Nói chung, không nên chọn giá trị chiều sâu cắt quá nhỏ vì khi đó lưỡi cắt sẽ bị trượt và cắt không liên tục. Giá trị chiều sâu cắt t ≥ 0,02 - 0,03 (mm).
4. Tính chất vật liệu cũng có ảnh hưởng đến độ nhám bề mặt chủ yếu là do khả năng biến dạng dẻo. Vật liệu dẻo và dai (thép ít Cacbon) dễ biến dạng dẻo sẽ cho độ nhám bề mặt lớn hơn vật liệu cứng và giòn. Khi gia công thép Carbon, để đạt độ nhám bề mặt thấp, người ta thường tiến hành thường hóa ở nhiệt độ 850 - 8700C (hoặc tôi thấp) trước khi gia công. Để cải thiện điều kiện cắt và nâng cao tuổi thọ dụng cụ cắt người ta thường tiến hành ủ ở 9000C trong 5 giờ để cấu trúc kim loại có hạt nhỏ và đồng đều.
c) Ảnh hưởng do rung động của hệ thống công nghệ đến chất lượng bề mặt
Quá trình rung động trong hệ thống công nghệ tạo ra chuyển động tương đối có chu kỳ giữa dụng cụ cắt và chi tiết gia công, làm thay đổi điều kiện ma sát, gây nên độ sóng và nhấp nhô tế vi trên bề mặt gia công.
Sai lệch của các bộ phận máy làm cho chuyển động của máy không ổn định, hệ thống công nghệ sẽ có dao động cưỡng bức, nghĩa là các bộ phận máy khi làm việc sẽ có rung động với những tần số khác nhau, gây ra sóng dọc và sóng ngang trên bề mặt gia công với bước sóng khác nhau. Khi hệ thống công nghệ có rung động, độ sóng và độ nhấp nhô tế vi dọc sẽ tăng nếu lực cắt tăng, chiều sâu cắt lớn và tốc độ cắt cao. Tình trạng máy có ảnh hưởng quyết định đến độ nhám của bề mặt gia công. Muốn đạt độ nhám bề mặt gia công thấp, trước hết phải đảm bảo đủ cứng vững, phải điều chỉnh máy tốt và giảm ảnh hưởng của các máy khác xung quanh.
2.3.2. Ảnh hưởng đến độ biến cứng bề mặt
Khi tăng lực cắt, nhiệt cắt và mức độ biến dạng dẻo thì mức độ biến cứng bề mặt tăng. Nếu kéo dài tác dụng của lực cắt, nhiệt cắt trên bề mặt kim loại sẽ làm tăng chiều sâu lớp biến cứng bề mặt. Nếu góc trước ó tăng từ giá trị âm đến giá trị dương thì mức độ và chiều sâu biến cứng bề mặt chi tiết giảm.
Vận tốc cắt tăng làm giảm thời gian tác động của lực gây ra biến dạng kim loại, do đó làm giảm chiều sâu biến cứng và mức độ biến cứng bề mặt.
Qua thực nghiệm, người ta có kết luận:
- V < 20 m/ph: chiều sâu lớp biến cứng tăng theo giá trị của vận tốc cắt
- V > 20 m/ph: chiều sâu lớp biến cứng giảm theo giá trị của lượng chạy dao.
Ngoài ra, biến cứng bề mặt cũng tăng nếu dụng cụ cắt bị mòn, bị cùn.
2.3.3. Ảnh hưởng đến ứng suất dư bề mặt
Quá trình hình thành ứng suất dư bề mặt khi gia công phụ thuộc vào sự biến dạng đàn hồi, biến dạng dẻo, biến đổi nhiệt và hiện tượng chuyển pha trong cấu trúc kim loại. Quá trình này rất phức tạp.
* Đối với dụng cụ hạt mài: Các chi tiết gia công bằng hạt mài tự do (mài nghiền) thường có ứng suất dư kéo, còn nếu mài bằng đai mài hoặc đá mài thì có ứng suất dư nén.
* Đối với dụng cụ có lưỡi cắt: Ta xét quá trình bào:
Lực cắt R được phân thành lực pháp tuyến N và lực tiếp tuyến P.
Lực cắt R làm cho lớp bề mặt gia công bị biến dạng dẻo và biến dạng đàn hồi. Lực pháp tuyến N gây ra ứng suất nén. Lực tiếp tuyến P gây ra ứng suất cắt (trượt và kéo).
Như vậy, điều kiện để tạo ra ứng suất nén (ứng suất nén có lợi cho độ bền mỏi của chi tiết máy) trên bề mặt gia công sẽ là:
Không có nhận xét nào:
Đăng nhận xét
Nội dung bài viết này có hữu ích với bạn không? #YCK2020 - Dự án Hỗ trợ Cộng đồng Cơ khí Trẻ